Chemistry of Di- and Tri-metal Complexes with Bridging Carbene or Carbyne Ligands. Part 31.' Synthesis and Crystal Structures of the Compounds $\left[\mathrm{AuW}(\mu-\mathrm{CHR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and [$\left.\mathrm{AuPtW}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)^{*}$

Gabino A. Carriedo, Judith A. K. Howard, F. Gordon A. Stone, and Michael J. Went Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1 TS

Treatment of a mixture of the salts $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and TIPF $_{6}$ in tetrahydrofuran (thf) with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ affords the bridged p-tolylmethylidene complex $[\mathrm{AuW}\{\mu-\mathrm{CH}$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, the structure of which has been established by a single-crystal X-ray diffraction study. As expected, the $\mathrm{Au}-\mathrm{W}$ bond [2.729(1) \AA] is spanned by the $\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ group. The $\mu-\mathrm{C}-\mathrm{W}$ separation is relatively short $[2.058(14) A]$ whereas the $\mu-\mathrm{C}-\mathrm{Au}$ distance is relatively long [2.268(14) A]. To account for these features a three-centre two-electron $\mu-\mathrm{C}-\mathrm{Au}-\mathrm{W}$ interaction is postulated. Addition of $\left[\mathrm{Au}\left(\mathrm{PR}_{3}^{\prime}\right)\right]+\left[\mathrm{PR}_{3}^{\prime}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$ fragments, generated in situ from [$\mathrm{AuCl}^{\left.\left(\mathrm{PR}_{3}^{\prime}\right)\right] \text { and TIPF }} \mathrm{F}_{6}$ in dichloromethane, to the alkylidynetungsten compounds $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Me$)$ affords the salts $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{PR}_{3}^{\prime}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} ; \mathrm{R}=\mathrm{Me}, \mathrm{PR}^{\prime}{ }_{3}=\mathrm{PPh}_{3}\right]$. N.m.r. studies (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) on solutions of these salts, however, reveal that the cations dissociate, affording equilibrium mixtures containing the species $\left[\mathrm{Au}\left\{\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+}$and $[\mathrm{Au}-$ $\left.\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$. The trimetal compound $\left[\mathrm{AuPtW}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ has been prepared by two routes: from the reaction between [Au\{W(三CR)(CO) $\left.\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$, and by addition of $\left[\mathrm{Au}(\mathrm{thf})\left(\mathrm{PMe}_{3}\right)\right]\left[\mathrm{PF} \mathrm{F}_{6}\right]$ to $\left[\mathrm{PtW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The structure of $\left[\mathrm{AuPtW}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{\eta}_{\mathrm{W}}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ has been established by X-ray crystallography. A triangular array of metal atoms [Au-W 2.801 (2), Au-Pt 2.956(2), and $\mathrm{Pt}-\mathrm{W}$ 2.770 (2) \AA] is asymmetrically bridged by the $C R$ ligand [$\mu_{3}-\mathrm{C}-\mathrm{Au} 2.21$ (4), $\mu_{3}-\mathrm{C}-\mathrm{Pt} 1.97$ (4), and $\mu_{3}-\mathrm{C}-\mathrm{W} 2.01$ (4) \AA]. The Au-Pt separation suggests that there is little or no direct metal-metal bonding between these two metal atoms. The tungsten atom carries the cyclopentadienyl ligand and two CO groups, but the latter are appreciably non-linear. The gold and platinum atoms are ligated by one and two PMe_{3} groups, respectively.

We have previously shown that the compound [W(三CR)-$\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ combines with a variety of low-valent metal-ligand fragments to afford complexes with bonds between tungsten and other transition elements (Ti , Zr, V, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt$).^{1-3}$ In the various products the heteronuclear metalmetal bonds are bridged by the p-tolylmethylidyne group. Recently we have extended our studies to species in which tungsten is bonded to $\mathrm{Cu},{ }^{4} \mathrm{Ag}$, or $\mathrm{Au} .{ }^{5,6}$ Herein we report further syntheses of gold-tungsten complexes. A preliminary description of one of the compounds has been given. ${ }^{7}$

Results and Discussion

The neutral compound $\left[W(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{8} \quad(\mathrm{R}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ combines with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{WH}(\mathrm{CO})_{5}\right]^{9}$ to form the ditungsten salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2}(\mu-\mathrm{CHR})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{7}$ Treatment of the latter with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ does not afford an isolable neutral ditungsten complex. Decomposition occurs to give $\mathrm{W}(\mathrm{CO})_{6}$ and unidentified products. In view of this result, the reaction between $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2}(\mu-\mathrm{CHR})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$

[^0]
(1)
and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ was next investigated. The groups H^{+}and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$are isolobal, and it was thought that the latter might afford a stable complex where protonation had not. The reaction was carried out in the presence of TIPF ${ }_{6}$ in order to remove chloride as TICl , and generate $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$in situ. A purple crystalline compound, [$\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}$ -$\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](1)$, was isolated after chromatography of the mixture on alumina.

The n.m.r. data for (1) were informative, but did not unambiguously define the structure. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (Table 1) showed two signals for CO ligands, in agreement with the observation of two bands in the i.r. spectrum at 1888 and $1793 \mathrm{~cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). In addition, a doublet resonance at $\delta 228.9$ p.p.m. with ${ }^{183} \mathrm{~W}$ satellite peaks [J(PC) 15 and $J(W C) 103 \mathrm{~Hz}$] was in accord with the presence of an alkylidene carbon nucleus CHR in (1). However, this signa! is somewhat more deshielded than those customarily found (210-100 p.p.m.) for μ-CHR groups spanning a metal-metal bond. ${ }^{10}$ The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed resonances due to the $\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}$, and Me-4 moieties. However, a further signal at $\delta 13.2$ was assigned to a $\mu-\mathrm{CH}$ R group, even though it was outside the normal range ($\delta 9-11$) for protons of this kind.

In order to establish the structure of (1), particularly with

Table 1. Hydrogen-1, carbon-13, and phosphorus-31 n.m.r. data ${ }^{\text {a }}$ for the gold-tungsten complexes

Compound	${ }^{1} \mathrm{H}(\mathrm{\delta}){ }^{5}$	${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{\text {c }}$	${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{\text {d }}$
(1) $\left[\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	$\begin{aligned} & 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.80(\mathrm{~s}, 5 \mathrm{H}, \\ & \left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 7.6-7.8\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right. \\ & \text { and } \left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 13.20(\mathrm{~s}, \mathrm{I}, \mathrm{H}, \mu-\mathrm{CH}) \end{aligned}$	246.3 [CO, J(WC) 161], 238.9 [CO, J(WC) 183], 228.9 [d, $\mu-\mathrm{C}$, $J(\mathrm{PC}) 15, J(\mathrm{WC})$ 103], 154.5 [$\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 137.0-128.0 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{5}$), $93.4\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.6$ (Me-4)	$63.4\left(\mathrm{PPh}_{3}\right)$
(2a) $\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2-}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]^{\text {c }}$	$\begin{aligned} & 2.33(\mathrm{br}, 3 \mathrm{H}, \mathrm{Me}-4), 5.94(\mathrm{~s}, \\ & \left.5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.1-7.3(\mathrm{~m}, 4 \mathrm{H}, \\ & \left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.4-7.6\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	292.6 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 24], 210.8$ [CO, J(WC) 178], 148.4 [C^{1} $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(W C) 32$], $143.0-126.0$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 92.9\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, 21.8 (Me-4)	$\begin{aligned} & 57.2\left(\mathrm{PPh}_{3}\right),-144.1 \text { [heptet, } \\ & \left.\mathrm{PF}_{6}^{-}, J(\mathrm{PF}) 711\right] \end{aligned}$
$\begin{aligned} & \text { (2b) }\left[\mathrm{AuW}(\mu-\mathrm{CMe})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)-\right. \\ & \left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right] \mathrm{e}^{e} \end{aligned}$	$\begin{aligned} & 2.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 5.83(\mathrm{~s}, 5 \mathrm{H}, \\ & \left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 7.2-7.7\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	304.7 ($\mu-\mathrm{C}), 210.2$ [CO, J(WC) 178], $134.0-126.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 92.7$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 42.9$ [Me, J(WC) 34]	$\begin{aligned} & 56.6\left(\mathrm{PPh}_{3}\right),-144.2 \text { [heptet, } \\ & \left.\mathrm{PF}_{6}-, J(\mathrm{PF}) 713\right] \end{aligned}$
$\begin{aligned} & \text { (2c) }\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}-\right. \\ & \left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]^{e} \end{aligned}$	$0.7-2.9\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and Me-4), 5.92 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 6.9-7.6 (m, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$)	292.3 [d, μ-C, J(PC) 24, J(WC) 177], 211.5 [CO, J(WC) 181], $148.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 142.5-129.4$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 93.0\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 34-25(\mathrm{~m}$, $\mathrm{C}_{6} \mathrm{H}_{11}$), 21.9 (Me-4)	$76.3\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right],-144.2$ [heptet, $\left.\mathrm{PF}_{6}{ }^{-}, J(\mathrm{PF}) 713\right]$
(5) $\left[\mathrm{AuPtW}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$	$\begin{aligned} & 91.29\left[\mathrm{~d}, 9 \mathrm{H}, \mathrm{Me} \mathrm{H}_{3} \mathrm{PPt}, J(\mathrm{PH}) 9,\right. \\ & J(\mathrm{PtH}) 38], 1.58[\mathrm{~d}, 9 \mathrm{H}, \\ & \left.\mathrm{Me}_{3} \mathrm{PAu}, J(\mathrm{PH}) 9\right], 1.71[\mathrm{~d}, 9 \mathrm{H}, \\ & \left.\mathrm{Me}_{3} \mathrm{PPt}, J(\mathrm{PH}) 9, J(\mathrm{PtH}) 40\right], \\ & 2.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.50(\mathrm{~s}, 5 \\ & \left.\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.47\left[\mathrm{AB}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4},\right. \\ & J(\mathrm{AB}) 7], 7.06\left[\mathrm{AB}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4},\right. \\ & J(\mathrm{AB}) 7] \end{aligned}$	$\begin{aligned} & 303.3(\mathrm{~m}, \mu-\mathrm{C}), 222.7(\mathrm{CO}), \\ & 214.4(\mathrm{CO}), 158.3\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \\ & 135.0-118.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 93.6 \\ & \left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2(\mathrm{Me}-4), 18.7[\mathrm{~d}, \\ & \mathrm{MeP}, J(\mathrm{PC}) 32], 17.5[\mathrm{~d}, \mathrm{MeP} \\ & J(\mathrm{PC}) 29], 16.2[\mathrm{~d}, \mathrm{MeP}, J(\mathrm{PC}) \\ & 34] \end{aligned}$	21.3 [d of d, PAu, $J(P P) 6$ and 3], -15.3 [d of d, PPt, $J(P P)$ 6 and $3, J(\mathrm{PPt}) 3$ 982], -26.5 [d of d, PPt, J(PP) 6 and 3, $J(\mathrm{PPt}) 2810$], 144.3 [heptet, $\mathrm{PF}_{6}{ }^{-}$, J(PF) 710]

${ }^{a}$ Chemical shifts in p.p.m., coupling constants in Hz . ${ }^{b}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{c}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, unless otherwise stated, positive values representing shifts to high frequency of $\mathbf{S i M e}_{4}$. ${ }^{d}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated, positive values representing shifts to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external). ${ }^{e}$ Spectra measured in CDCl_{3}. ${ }^{\boldsymbol{s}}$ Multiplet, sce text. ${ }^{\boldsymbol{g}}$ Spectra measured at $-40^{\circ} \mathrm{C}$.

Table 2. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses for [$\mathrm{AuW}\{\mu-\mathrm{CH}$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1)

$\mathrm{Au}-\mathrm{W}$	2.729(1)	Au-P	2.262(4)
$\mathrm{Au}-\mathrm{C}(1 \mathrm{~A})$	2.268(14)	W-C(1A)	2.058(14)
W-C(1)	1.97(2)	W-C(2)	1.94(2)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.16(2)	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.15(2)$
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	1.47(2)	C(1A)-H(IA)	0.98(10)
$\mathrm{P}-\mathrm{C}(11)$	$1.805(9)$	P-C(21)	1.810(10)
$\mathrm{P}-\mathrm{C}(31)$	1.805(9)	mean $\mathrm{W}-\mathrm{C}(\mathrm{cp})^{a}$	2.36 (2)
		mean $\mathrm{C}-\mathrm{Cl}^{\text {b }}$	1.72(2)
W-Au-P	159.2(1)	W-Au-C(1A)	47.5(3)
$\mathrm{P}-\mathrm{Au}-\mathrm{C}(1 \mathrm{~A})$	151.8(4)	Au-W-C(1A)	54.4(4)
$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(2)$	74.1(7)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(1 \mathrm{~A})$	87.0(6)
$\mathrm{Au}-\mathrm{W}-\mathrm{C}(1)$	116.3(4)	$\mathrm{Au}^{\mathbf{-}} \mathbf{W}-\mathrm{C}(2)$	73.0(4)
$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(1 \mathrm{~A})$	107.2(6)	$\mathrm{Au}-\mathrm{C}(1 \mathrm{~A})-\mathrm{W}$	78.1(5)
$\mathrm{Au}-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	100.7(8)	W-C(1A)-C(1B)	137.6(10)
$\mathrm{Au}-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	108(6)	W-C(1A)-H(1A)	101(6)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	119(6)	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(11)$	110.8(3)
$\mathrm{Au}-\mathrm{P}-\mathrm{C}(21)$	116.1(3)	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(31)$	113.1(3)
$\mathrm{W}-\mathrm{C}(1)-\mathrm{O}(1)$	177(1)	$\mathrm{W}-\mathrm{C}(2)-\mathrm{O}(2)$	177(1)
${ }^{\text {a cp }}=\eta-\mathrm{C}_{5} \mathrm{H}_{5} \cdot{ }^{\text {b }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.			

respect to resolving the bridging or non-bridging nature of the CHR group, an X-ray diffraction study was carried out. The results of this study are summarised in Table 2, and the molecule is shown in Figure 1, together with the atomnumbering scheme.

The molecule has an $A u-W$ bond bridged by the CHR group. The $A u-W$ separation [$2.729(1) \AA$] may be compared with those found in $\left[\mathrm{AuW}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$] [2.698(3) $\AA^{11}{ }^{11} \quad$ and $\quad\left[\mathrm{Au}\left\{\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$

Figure 1. Molecular structure of the complex $\left[\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\mathrm{Me}-4)\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (1), showing the atom-numbering scheme
[2.752(1) \AA]. ${ }^{6}$ The $W-C(1 A)$ distance $[2.058(14) \AA$] is relatively short, suggesting a degree of double bond character. Thus in $\left[\mathrm{W}\left(=\mathrm{CPh}_{2}\right)(\mathrm{CO})_{5}\right]$, with a carbon-tungsten double bond, the carbon-tungsten separation is $2.14(2) ~ \AA,{ }^{12}$ and in the μ methoxy(aryl)methylidene compounds [WPt $\{\mu-\mathrm{C}(\mathrm{OMe}) \mathrm{Ph}\}-$ $\left.(\mathrm{CO})_{5}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ and $\left[\mathrm{WPt}\left\{\mu-\mathrm{C}(\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}(\mathrm{CO})_{4}-\right.$
$\left.\left(\mathrm{PMe}_{3}\right)_{3}\right]$ the $\mathrm{W}^{-} \mathrm{C}$ distances are $2.48(1)$ and $2.37(1) \AA$, respectively. ${ }^{13}$ The short $\mathrm{W}-\mathrm{C}(1 \mathrm{~A})$ bond in (1) is accompanied by a relatively long $\mathrm{Au} \mathbf{u}^{-} \mathrm{C}(1 \mathrm{~A})$ separation $[2.268(14) ~ \AA]$. Thus the $\mathrm{Au}-\mathrm{C} \sigma$-bond distances in $\left[\mathrm{AuMe}\left(\mathrm{PPh}_{3}\right)\right][2.124(28)$ $\AA]^{14}$ and $\left[\mathrm{Au}\left\{\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+}[2.119(7)$ $\AA]^{6}$ are appreciably shorter.

The tungsten atom carries the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group and two CO ligands. The $\mathrm{W}-\mathrm{C}-\mathrm{O}$ angles deviate little from linearity, yet the CO ligands in the i.r. spectrum give rise to bands at relatively low frequencies [1881 and $1786 \mathrm{~cm}^{-1}$ (in Nujol)], as might be expected for the presence of semi-bridging or bridging groups. The explanation for this must lie in extensive back bonding to the CO groups, the tungsten centre being relatively electron rich, a feature which is discussed further below. The plane defined by the $\mathrm{W}(\mathrm{CO})_{2}$ fragment is at 98° to the plane $\hat{A} u\{\mu-\mathrm{C}(1 \mathrm{~A})\} \mathrm{W}$, and the angle between the latter and the $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ system is 78°.

The above mentioned differences in the $\mathrm{C}-\mathrm{W}$ and $\mathrm{C}-\mathrm{Au}$ distances in the $\mathrm{Au}(\mu-\mathrm{CHR}) \mathrm{W}$ dimetallacyclopropane ring of (1) correlate with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. shifts, mentioned earlier. The n.m.r. data correspond more closely with those expected for a terminally bound CHR group rather than for this ligand bridging a metal-metal bond. In this context, the bonding in the $A u(\mu-C H R) W$ ring system is of considerable interest. The formulation shown for (1) implies 17 and 15 electron counts at the tungsten and gold centres, respectively. To account for the diamagnetism of the compound, electron pairing via a $A u=W$ bond could be invoked, but the observed $\mathrm{Au}-\mathrm{W}$ distance is not in accord with this feature. There is the possibility of a three-centre two-electron interaction formed by a combination of the hybrid atomic orbitals of $\mathrm{Au}(s p)$, $\mathrm{C}\left(s p^{3}\right)$, and $\mathrm{W}\left(d^{2} s p^{3}\right)$, so that the ring system could be represented by (1a). The 'half-arrow' convention of Green and

(a)

(b)
(1)
co-workers ${ }^{15}$ used for agostic hydrogen atoms is extended to the isolobal $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ fragment in this representation. The formal valence-electron counts at tungsten and gold would be 18 and 14, respectively, as is generally found in organocomplexes of these metals. It is interesting to relate some of the structural data for (1) with that found in species with agostic hydrogen atoms, e.g. $\left[\mathrm{Ta}_{2}\left(\mathrm{CHMe}_{3}\right)_{2} \mathrm{Cl}_{6}\left(\mathrm{PMe}_{3}\right)_{2}\right]{ }^{16}$ where the bridging $\mathrm{C}^{-} \mathrm{H}$ distance is $c a .5-10 \%$ longer than for normal $\mathrm{C}-\mathrm{H}$ bonds. The relatively long $\mathrm{Au}-\mu-\mathrm{C}$ distance in (1) was mentioned above. An equally valid representation for (1) is (1b), i.e. the molecule contains a 'semi-bridging carbene' akin to a semi-bridging carbonyl. This would account for the short $\mathrm{W}-\mathrm{C}(1 \mathrm{~A})$ bond, the slightly longer $\mathrm{Au}^{-} \mathrm{C}(1 \mathrm{~A})$ distance, and the n.m.r. data with relatively high frequency ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances for the μ-CHR group.

Treatment of (1) with $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ afforded an orange solid. This solid was more satisfactorily prepared from the reaction between [W(三CR)(CO) $\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)$] and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ carried out in the presence of TIPF_{6}. Although the product gave microanalytical data consistent with it being (2a), a $1: 1$ adduct of $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$, examination of the n.m.r. spectra (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathbf{H}\right\}$) revealed that in solution a mixture of complexes was present.

The ${ }^{31} \mathbf{P}$ - $\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. spectrum was especially informative with three resonances at $\delta 45.2,57.2$, and -144.1 p.p.m. The latter was a heptet signal $[J(\mathrm{PF}) 711 \mathrm{~Hz}$, and this can be ascribed to the $\left[\mathrm{PF}_{6}\right]^{-}$anion. The peak at $\delta 45.2$ was shown to be due to the cation $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, by independently preparing $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ and measuring its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum. The resonance at 57.2 p.p.m. is thus assigned to (2a). Examination of the ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of the orange product showed that as well as (2a) and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, the previously prepared ${ }^{6}$ compound $\left[\mathrm{Au}\left\{\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}(\eta\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ (3a) was present, having characteristic resonances at $\delta 294.7(\mu-C R)$ and 211.3 (CO). ${ }^{6}$ For (2a) the corresponding signals are seen (Table 1) at $\delta 292.6$ ($\mu-C R$) and 210.8 (CO). Other ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. resonances for (2a) were assigned after identifying all the peaks in the spectrum of the mixture due to the two species $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and (3a). The presence of ($2 a$) and ($3 a$) in the equilibrium mixture formed by dissolving the orange solid in dichloromethane was further confirmed from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum. This mixture showed two $\mathrm{C}_{5} \mathrm{H}_{5}$ signals at $\delta 5.94$ and 5.86 p.p.m. The latter is due to (3a) and hence the former is due to (2a). Although only one resonance for an Me-4 substituent was observed, the peak was broad, and integration relative to the $\mathrm{C}_{5} \mathrm{H}_{5}$ signals showed that it was due to two methyl groups. From the relative intensity of the peaks in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, it was estimated that ca. 27% of the mixture consisted of the species [AuW $(\mu-\mathrm{CR})(\mathrm{CO})_{2^{-}}$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$. The i.r. spectrum of the mixture showed two strong but broad peaks at 2025 and $1970 \mathrm{~cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The spectrum could not be measured in hexane since the orange solid was too insoluble. Measurement of the spectrum in tetrahydrofuran (thf) led to the discovery that in this solvent (2a) decomposed into [W(三CR)(CO) $\left.2\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{thf})\right]\left[\mathrm{PF}_{6}\right]$. Removal of solvent, and addition of dichloromethane afforded the equilibrium mixture again (Scheme). Addition of PPh_{3} resulted in the formation of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{W}(=\mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$.

Reactions were also investigated between [W($\equiv \mathbf{C M e})$ -$\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$, and between $\left[\mathrm{W}\left(=\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{AuCl}\left\{\mathrm{P}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right.$], in the presence of TlPF_{6}, with dichloromethane as solvent. Solid products were obtained, corresponding to the salts (2b) and (2c) by microanalysis, but n.m.r. studies on the solutions revealed dissociation of these complexes, as described above for (2a) (Scheme). The peak assignments in the n.m.r. spectra (Table 1) were made from a knowledge of the data for $\left[\mathrm{Au}\left\{\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right] \quad(3)\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or

Scheme. \quad cp $=\eta-\mathrm{C}_{5} \mathrm{H}_{5} ; \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \quad \mathrm{PR}^{\prime}{ }_{3}=\mathrm{PPh}_{3} ; \quad \mathrm{R}=\mathrm{Me}, \quad \mathrm{PR}^{\prime}{ }_{3}=\mathrm{PPh}_{3} ; \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \quad \mathrm{PR}^{\prime}{ }_{3}=\mathrm{P}\left(\mathrm{cyclo}-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}: \quad(i)+\mathrm{S}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or thf), (ii) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{Me})$ and $\left.\left[\mathrm{Au}\left(\mathrm{PR}^{\prime}\right)_{2}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]\left[\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ or $\left.\mathbf{P}\left(\text { cycio- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$ which allowed the peaks for (2b) and (2c) to be identified in the mixtures. From the relative intensities of the peaks in the ${ }^{1} \mathrm{H}$ spectra, it was estimated that at equilibrium ca. 33% of (2b) and 80% of (2 c) were present in solution. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (2c) the resonance for the $\mu-C\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ nucleus at $\delta 292.3$ p.p.m. was a doublet [$J(\mathrm{PC}) 24 \mathrm{~Hz}$] and it also showed ${ }^{183} \mathrm{~W}$ satellite peaks [$J(W C) 177 \mathrm{~Hz}$]. The $\mu-C \mathrm{Me}$ signal in the spectrum of (2b) (δ 304.7) was a multiplet, overlapping the μ-CMe resonance for the cation of (3b).

We have recently prepared the gold-tungsten-platinum complex (4), by treating [$\mathrm{PtW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] with $\left[\mathrm{AuCl}\left\{\mathrm{S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}\right\}\right]$ and TlPF_{6} in tetrahydrofuran. ${ }^{5}$ It seemed logical that (4) might also be prepared by adding two equivalents of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ to (3a). However, examination of the spectroscopic (i.r. and n.m.r.) properties and microanalysis of the product (5) of this reaction showed that an unexpected pathway had been followed. Compound [AuPtW $\left.\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ (5) had CO stretching bands at 1936 and $1831 \mathrm{~cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), the

Table 3. Selected internuclear distances (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses for [AuPtW($\mu_{3}-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ (5)

Au-W	2.801(2)	$\mathrm{Au}-\mathrm{Pt}$	2.956(2)
Pt-W	2.770 (2)	$\mathrm{C}-\mathrm{Au}$	2.21(4)
C-Pt	1.97(4)	C-W	2.01(4)
$\mathrm{C}-\mathrm{C}(1)$	1.52(6)	$\mathrm{P}(3)-\mathrm{Au}$	2.27(1)
$\mathrm{P}(1)-\mathrm{Pt}$	2.26(1)	$\mathrm{P}(2)-\mathrm{Pt}$	2.32(2)
W-C(01)	1.90 (4)	W-C(02)	1.89(10)
$\mathrm{C}(01)-\mathrm{O}(01)$	1.26(5)	$\mathrm{C}(02)-\mathrm{O}(02)$	1.40(11)
W-C(cp)	$2.36(4)$ *	$\mathrm{C}(4)-\mathrm{C}(04)$	1.43(7)
$\mathrm{P}(1)-\mathrm{C}(\mathrm{Me})$	$1.88(6) *$	$\mathrm{P}(2)-\mathrm{C}(\mathrm{Me})$	1.83(5) *
$\mathrm{P}(3)-\mathrm{C}(\mathrm{Me})$	1.84(6)*	$\mathrm{P}-\mathrm{F}$	$1.55(6) *$
$\mathrm{Pt} \cdot \cdots \mathrm{C}(01)$	2.46(4)	Pt \cdots C(02)	2.66 (8)
$\mathrm{Pt}-\mathrm{Au}^{-W}$	57.4(1)	$\mathrm{Pt}-\mathrm{C}-\mathrm{Au}$	90(2)
$\mathrm{Au}-\mathrm{Pt}-\mathrm{W}$	58.5(1)	$\mathrm{Au}-\mathrm{C}-\mathrm{W}$	83(3)
$\mathrm{Pt}-\mathrm{W}-\mathrm{Au}$	64.1(1)	W-C-Pt	88(2)
W-C(01)-O(01)	162(3)	$\mathrm{W}-\mathrm{C}-\mathrm{C}(1)$	134(3)
$\mathrm{W}-\mathrm{C}(02)-\mathrm{O}(02)$	145(5)	$\mathrm{Au}-\mathrm{C}-\mathrm{C}(1)$	114(2)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	97.5(5)	$\mathrm{Pt}-\mathrm{C}-\mathrm{C}(1)$	132(2)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Au}$	97.3(3)	$\mathbf{P}(3)-\mathrm{Au}-\mathrm{Pt}$	133.8(4)
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{Au}$	122.1(3)	P(3)-Au-W	157.4(4)
$\mathbf{P}(1)-\mathrm{Pt}^{-} \mathbf{W}$	145.1(4)	P(3)-Au-C	157(1)
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{W}$	116.4(3)	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}$	99(1)
		$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}$	162(1)
		$\mathrm{W}-\mathrm{Pt}-\mathrm{C}$	46(1)

* Mean value.
latter absorption suggesting the presence of a semi-bridging carbonyl group. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (Table 1) was informative showing four resonances. Of these signals, that observed at $\delta-144.3$ [heptet, $J(\mathrm{PF}) 710 \mathrm{~Hz}$] was assigned to a $\left[\mathrm{PF}_{6}\right]^{-}$anion. Two of the remaining three signals, at $\delta-15.3$ [$J(\mathrm{PtP}) 3982 \mathrm{~Hz}$] and at -26.5 [$J(\mathrm{PtP}) 2810 \mathrm{~Hz}$], were obviously due to PMe_{3} ligands in different environments and attached to platinum. No ${ }^{195} \mathrm{Pt}$ satellite peaks were seen on the fourth resonance at 21.3 p.p.m., and this observation together with the chemical shift suggested that it was due to a $\mathrm{Au}\left(\mathrm{PMe}_{3}\right)$ group. The ${ }^{13} \mathrm{C}-\{1 \mathrm{H}\}$ n.m.r. spectrum showed a resonance at $\delta 303.3$ p.p.m., ascribable to a $\mu-C R$ group, but with a different chemical shift from those observed for this group in the spectra of either (3a) or (4). ${ }^{5,6}$

In order to establish the structure of (5) a single-crystal X-ray diffraction study was carried out. Unfortunately only a very small crystal could be obtained, and some decay occurred during exposure to the X-ray beam (Experimental section), consequently the data obtained were limited but nevertheless the nature of (5) was unambiguously defined. The results are summarised in Table 3. The structure of the cation is shown in Figure 2, together with the atom-numbering scheme.

Figure 2. Molecular structure of the cation [AuPtW $\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ 4)(CO) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+}$of (5), showing the atom-numbering scheme

A triangle of metal atoms is capped by the p-tolylmethylidyne group. The $\mathrm{Pt}-\mathrm{W}$ separation $[2.770(2) \AA$] is similar to those found in the cluster compounds $\left[\mathrm{Pt}_{3} \mathrm{~W}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}(\mathrm{CO})_{4}-\right.$ $\left.(\operatorname{cod})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](\operatorname{cod}=$ cyclo-octa-1,5-diene $)[2.750(1) \AA]^{5}$ and $\left[\mathrm{FePtW}\left(\mu_{3}-\mathrm{CR}\right)\left(\mathrm{CO}_{6}\left(\mathrm{PEt}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad[2.775(1) \quad \AA]^{17}\right.$ which also contain triangular arrays of metal atoms spanned by $\mu_{3}-\mathrm{CR}$ groups. The $\mathrm{Au}-\mathrm{W}$ distance $[2.801(2) \AA]$ may be compared with that found $[2.752(1) \AA]$ in (3a). ${ }^{6}$ The $\mathrm{Au}-\mathrm{Pt}$ separation [2.956(2) \AA] is appreciably longer, and may indicate little direct metal-metal bonding. The $\mathrm{Au}-\mathrm{Pt}$ distance would then be defined by the geometrical requirements of the bridging $\mathrm{RC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ group which would use its two orthogonal π orbitals to form bonds with the $\mathrm{Au}\left(\mathrm{PMe}_{3}\right)$ and $\operatorname{Pt}\left(\mathrm{PMe}_{3}\right)_{2}$ fragments. The cation has 44 cluster valence electrons, two less than in $\left[\mathrm{Pt}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{4}\left(\mathrm{PMePh}_{2}\right)_{2}(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] where the $\mathrm{Pt}-\mathrm{Pt}$ distance [2.989(3) \AA] has also been taken to imply little or no metal-metal bonding. ${ }^{18}$ The presence of platinum or gold atoms in clusters commonly leads to stable species with fewer valence electrons than the number associated with clusters containing $d^{6}-d^{9}$ elements. The latter generally form tri- or tetra-nuclear low-valent compounds with 48 or 60 cluster valence electrons, respectively, each metal centre having an 18 -electron environment.

The alkylidyne carbon atom in (5) asymmetrically bridges the metal triangle [$\mathrm{C}^{-} \mathrm{Au} 2.21(4), \mathrm{C}-\mathrm{Pt}$ 1.97(4), and $\mathrm{C}-\mathrm{W}$ $2.01(4) \AA$]. The tungsten atom carries the cyclopentadienyl ligand and two carbonyl groups. The latter are distorted towards the platinum atom, but the low resolution of the $\mathrm{W}^{-} \mathrm{C}^{-} \mathrm{O}$ angles (Table 3) makes critical discussion unwarranted. The $\mathrm{C}_{5} \mathrm{H}_{5}$ ring is inclined at 72° to the metal triangle, while the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group on the other side is nearly perpendicular (84°) to it. If direct $\mathrm{Au}-\mathrm{Pt}$ bonding is neglected, the platinum atom is in a distorted square-planar environment, defined by $C, P(1), P(2)$, and W, with the atoms C and W lying 0.24 and $0.37 \AA$, respectively, from the $\mathrm{P}_{2} \mathrm{Pt}$ plane. The $\mathrm{P}(2)-\mathrm{Pt}$ distance $[2.32(2) \AA$] is significantly longer than $\mathbf{P (1) - \mathrm { Pt } [2 . 2 6 (1) ~} \AA]$, in accord with $\mathbf{P}(2)$ being transoid to $\mu_{3}-\mathrm{C}\left[\mathrm{P}(2)-\mathrm{Pt}^{-} \mathrm{C} 162(1)\right.$ and $\left.\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C} 99(1)^{\circ}\right] .{ }^{19} \mathrm{~A}$ similar
effect is seen in the trimetal cluster [$\mathrm{FePtW}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{5^{-}}$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right][\mathrm{P}-\mathrm{Pt}, 2.331(4)$ and $2.289(3) \AA]{ }^{17}$ The $\mathrm{Au}-\mathrm{P}$ distance $\left[2.27(1) \AA\right.$] is as expected, ${ }^{20}$ being similar to that found in (1).

Having established the structure of (5) by X-ray crystallography, it was possible to devise a rational synthesis involving treatment of $\left[\mathrm{PtW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{21} \quad$ with $\left[\mathrm{Au}\left(\mathrm{PMe}_{3}\right)\right]^{+}$, the latter being generated in situ from [$\mathrm{AuCl}-$ $\left(\mathrm{PMe}_{3}\right)$] and AgPF_{6} in thf-MeOH. Since the groups [Au$\left.\left(\mathrm{PMe}_{3}\right)\right]^{+}$and H^{+}are isolobal, it is interesting to compare this synthesis of (5) with the protonation of $\left[\mathrm{PtW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}-\right.$ $\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] which gives ${ }^{22}$ the cation [PtW(μ-CHR)-$\left.(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$.

The unexpected formation of (5) from the reaction between (3a) and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ in thf suggests that some free PMe_{3} is present, which is captured by a weakly ligated gold atom so as to produce the $\mathrm{Au}\left(\mathrm{PMe}_{3}\right)$ fragment in the product. We have previously mentioned ${ }^{6}$ the tendency of (3a) in solution to dissociate $\left[W(\equiv C R)(C O)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, and this property (Scheme) could lead to a species $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{OC})_{2}-\right.$
W($\mu-\mathrm{CR}) \mathrm{Au}($ thf $)]^{+}$. Combination of the latter with PMe_{3} and $\mathrm{Pt}\left(\mathrm{PMe}_{3}\right)_{2}$ would yield (5), as the most thermodynamically stable product among the various species present in the equilibrium mixture.

Experimental

Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Experiments were carried out using Schlenk-tube techniques, under a dry oxygen-free nitrogen atmosphere. The n.m.r. measurements were made with JNM-FX 90Q and FX 200 instruments, and i.r. spectra with a Nicolet 10-MX FT spectrophotometer. The compounds [W $\left.(\equiv C R)(C O)_{2}\left(\eta-C_{5} \mathrm{H}_{5}\right)\right]$ $\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Me$){ }^{8} \quad\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]{ }^{23} \quad\left[\mathrm{AuW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]{ }^{6} \quad\left[\mathrm{PtW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, ${ }^{21}$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}-\right.$ $\left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{7}$ were prepared as previously described.

Synthesis of $\left[\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (1).-A mixture of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}_{2}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\right.$ -$\left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](1.11 \mathrm{~g}, 0.87 \mathrm{mmol})$ and $\mathrm{TIPF}_{6}(0.50 \mathrm{~g}, 1.43$ $\mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ was treated with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.43 \mathrm{~g}$, 0.87 mmol). After stirring for 1 h , during which time the mixture turned black, solvent was removed in vacuo. The residue was dissolved in light petroleum-dichloromethane ($3: 2$) and chromatographed on a Florisil column (ca. $2.5 \times$ 15 cm), at $-20{ }^{\circ} \mathrm{C}$, eluting with light petroleum-dichloromethane (3:2). Removal of solvent in vacuo from the purple eluate afforded purple microcrystals of [$\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (1) $\quad(0.32 \mathrm{~g}, \quad 42 \%$) (Found: C, 43.9; H, 3.2. $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{AuO}_{2} \mathrm{PW} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C , $43.5 ; \mathrm{H}, 3.1 \%) ; v_{\text {max. }}(\mathrm{CO})$ at 1888 s and $1793 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and at 1881 s and $1786 \mathrm{~s} \mathrm{~cm}^{-1}$ (Nujol).

Reactions between $\left[W(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ 4 or Me$)$ and $\left[\mathrm{AuCl}\left(\mathrm{PR}_{3}\right)\right]\left[\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$. Similar procedures were used to prepare the compounds (2) (Table 1). Thus $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.13 \mathrm{~g}$, 0.31 mmol) in dichloromethane ($10 \mathrm{~cm}^{3}$) was treated with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.15 \mathrm{~g}, 0.31 \mathrm{mmol})$, and $\mathrm{TlPF}_{6}(0.18 \mathrm{~g}, 0.50$ mmol) was then added. After stirring the mixture for 1 h , i.r. analysis showed that all the $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ had been consumed. The mixture was filtered through a Celite plug ($c a .1 \times 3 \mathrm{~cm}$), and the solvent was removed in vacuo. Washing the residue obtained with light petroleum (2×15 cm^{3}) gave an orange powder (0.29 g), the n.m.r. data for which showed the salt $\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ -

Table 4. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for complex (1), with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	\boldsymbol{y}	z
Au	1844 (1)	$1987(1)$	2 487(1)
W	-498(1)	$1177(1)$	$1355(1)$
P	$3084(4)$	3 072(3)	3 543(2)
$\mathrm{C}(01)^{a}$	-795(18)	3 203(20)	668(13)
C(02)	-1576	2178	191
C(03)	-2782	1794	491
C(04)	-2746	2581	1153
C(05)	-1517	3452	1263
$\mathrm{C}(01 \mathrm{~A})^{\text {a }}$	-838(29)	2 884(33)	345(16)
C(02A)	-766	3590	1036
C(03A)	-1998	3207	1316
C(04A)	-2830	2264	798
C(05A)	-2 113	2064	198
C(12) ${ }^{\text {a }}$	1 596(9)	5 483(8)	3 026(4)
C(13)	860	6739	3087
C(14)	666	7192	3785
C(15)	1208	6389	4422
C(16)	1943	5134	4361
C(11)	2137	4681	3663
C(22) ${ }^{\text {a }}$	4 633(9)	2 211(9)	4 989(5)
C(23)	4730	1577	5674
C(24)	3503	902	5789
C(25)	2179	860	5218
C(26)	2083	1493	4532
C(21)	3310	2169	4418
C(32) ${ }^{\text {a }}$	5 853(9)	2 526(7)	3 244(5)
C(33)	7301	2828	3203
C(34)	7857	4104	3434
C(35)	6965	5077	3707
C(36)	5517	4776	3748
C(31)	4961	3500	3516
C(1A)	1741 (14)	1000 (13)	$1347(8)$
C(18)	2 987(13)	-23(12)	$1547(7)$
C(2B)	4 219(15)	78(14)	1226 (8)
C(3B)	$5413(16)$	-901(14)	$1398(8)$
C(4B)	5 431(14)	-1969(12)	$1872(7)$
C(5B)	4 238(15)	-2031(14)	$2178(8)$
C(6B)	3 029(14)	- 1084 (13)	2 018(7)
C(41B)	$6742(17)$	-2 940(15)	2042 (9)
C(1)	-575(16)	-792(22)	1 138(9)
$\mathrm{O}(1)$	-622(12)	-1955(13)	$1039(7)$
C(2)	-696(16)	329(16)	2 273(10)
O(2)	-888(11)	-152(10)	$2805(7)$
$\mathrm{Cl}(1)^{\text {b }}$	3 868(5)	4 288(4)	1 626(2)
$\mathrm{Cl}(2){ }^{\text {b }}$	3 113(5)	3 789(5)	29(3)
$\mathrm{C}^{\text {b }}$	3 794(19)	4 928(17)	755(9)
$\mathrm{Ha}{ }^{\text {b }}$	3147	5735	683
Hb°	4791	5155	737

${ }^{a}$ The rings are defined with regular geometry and common e.s.d.s. ${ }^{b} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ of crystallisation.
[PF_{6}] (2a) to be present (Table 1), together with [$\mathrm{Au}\{\mathrm{W}$ $\left.\left.\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ (3a) and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]-$ [PF_{6}] (see Results and Discussion section).

Synthesis of $\quad\left[\mathrm{AuPtW}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ (5).-The compound $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right](0.2 \mathrm{~g}, 0.5$ $\mathrm{mmol})$ in ethylene-saturated light petroleum $\left(5 \mathrm{~cm}^{3}\right)$ at $0 .{ }^{\circ} \mathrm{C}$ was treated with a solution of $\mathrm{PMe}_{3}(1.1 \mathrm{mmol})$ in $2.1 \mathrm{~cm}^{3}$ of the same solvent to generate $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ in situ. This reagent was then treated with $\left[\mathrm{Au}\left\{\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ (3a) ($0.2 \mathrm{~g}, 0.17 \mathrm{mmol}$) in thf ($15 \mathrm{~cm}^{3}$), and the mixture stirred (0.5 h) under an ethylene atmosphere. The solution was concentrated in vacuo to ca. $5 \mathrm{~cm}^{3}$, after which diethyl ether ($60 \mathrm{~cm}^{3}$)

Table 5. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for complex (5), with estimated standard deviations in parentheses

Atom	\boldsymbol{x}	y	z
Pt	$5832(2)$	3 348(1)	$2998(1)$
Au	3871 (2)	1 403(2)	1991(2)
W	3 325(2)	3 809(2)	$1593(1)$
P(1)	$6962(12)$	2 378(10)	4 392(10)
$\mathrm{P}(2)$	7 640(12)	3 819(11)	2 609(11)
$\mathrm{P}(3)$	4 052(16)	-541(11)	$1670(11)$
P	$9706(14)$	8871 (13)	2 049(10)
F(1)	11 028(50)	$9007(43)$	2 991(34)
F(2)	$8412(72)$	8 732(64)	$1134(52)$
$F(3)$	9 154(54)	7 801(47)	$2375(37)$
F(4)	10 252(53)	$10043(47)$	$1724(37)$
F(5)	10 502(56)	8 044(49)	1 605(39)
F(6)	$8882(61)$	9 616(53)	2 459(42)
$\mathrm{Me}(1)$	8 333(51)	$1413(46)$	4 367(37)
$\mathrm{Me}(2)$	6 042(58)	1 255(52)	$4859(41)$
$\mathrm{Me}(3)$	7 719(60)	3 324(54)	5 505(42)
Me(4)	7 414(53)	4 925(48)	$1758(38)$
$\mathrm{Me}(5)$	9 246(51)	$4376(45)$	3 620(36)
Me(6)	8170 (47)	$2515(41)$	$2105(33)$
Me (7)	5 628(56)	-867(49)	$1500(39)$
Me (8)	2 674(66)	-1 149(60)	569(46)
$\mathrm{Me}(9)$	3 978(53)	- $1561(47)$	$2555(38)$
C(7) *	1 248(41)	4 044(34)	1 659(23)
C(8)	1665	5146	1392
C(9)	1694	4990	461
C(10)	1295	3790	153
C(11)	1020	3206	894
C(01)	4 663(41)	5 046(36)	2 038(29)
$\mathrm{O}(01)$	5 262(33)	6040 (30)	$2123(24)$
C(02)	4 553(83)	$3350(75)$	$1071(60)$
$\mathrm{O}(02)$	4720 (46)	3 080(41)	216(33)
C	3 995(38)	$3006(34)$	2886 (27)
C(1) *	3 431(27)	2 819(25)	3 655(17)
C(2)	2524	1886	3590
C(3)	2039	1749	4315
C(4)	2461	2545	5105
C(5)	3367	3478	5170
C(6)	3852	3615	4444
C(04)	2 007(52)	2 322(45)	$5863(36)$

* The rings are defined with regular geometry and common e.s.d.s.
was added, affording a precipitate. Solvent was removed (syringe), and the precipitate was washed with diethyl ether ($5 \times 15 \mathrm{~cm}^{3}$), dissolved in thf ($30 \mathrm{~cm}^{3}$), and passed through a Celite pad ($c a .2 .5 \times 5 \mathrm{~cm}$). Concentration to $c a .10 \mathrm{~cm}^{3}$ and slow addition of diethyl ether gave brown crystals of [AuPtW-$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{0}\right]$ (5) $(0.15 \mathrm{~g}, 75 \%)$ (Found: C, 24.6; H, 3.3. $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{AuF}_{6} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{PtW}$ requires C , $24.6 ; \mathrm{H}, 3.3 \%$); $v_{\max }(\mathrm{CO})$ at 1936 s and $1831 \mathrm{~m} \mathrm{br} \mathrm{cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and 1932 s and $1840 \mathrm{~s} \mathrm{br} \mathrm{cm}{ }^{-1}$ (in Nujol).

Compound (5) can also be prepared by the following route. A suspension of $\left[\mathrm{AuCl}\left(\mathrm{PMe}_{3}\right)\right](0.033 \mathrm{~g}, 0.107 \mathrm{mmol})$ in thf ($10 \mathrm{~cm}^{3}$) was treated with $\mathrm{AgPF}_{6}(0.025 \mathrm{~g}, 0.099 \mathrm{mmol}$) in methanol ($1 \mathrm{~cm}^{3}$). After filtration to remove AgCl , the filtrate was added to $\left[\mathrm{PtW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ ($0.089 \mathrm{~g}, 0.118 \mathrm{mmol}$) in thf $\left(5 \mathrm{~cm}^{3}\right)$, and the solution stirred (5 min). Concentration in vacuo to ca. $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($c a .60 \mathrm{~cm}^{3}$) gave, after removal of solvent, brown crystals of (5) ($0.65 \mathrm{~g}, 56 \%$).

Crystal Structure Determinations.-Crystals of (1) grew as purple rhombs from dichloromethane-light petroleum; those of (5) were very small, almost black, prisms obtained from diethyl ether. Crystals were sealed under nitrogen in glass capillary tubes, and diffracted intensities were collected (ω
scans) on a Nicolet $P 3 m$ four-circle diffractometer at 200 K for (1) and at 298 K for (5). For (1) the crystal dimension was $c a$. $0.20 \times 0.22 \times 0.32 \mathrm{~mm}$, and for both species data were recorded in the range $2.9 \leqslant 2 \theta \leqslant 50^{\circ}$. For (1), of 5831 intensities, 4983 had $I \geqslant 1 \sigma(I)$, where $\sigma(I)$ is the standard deviation based on counting statistics, and these were used in the solution and final refinement of the structure, after the data had been corrected for Lorentz and polarisation effects, decay factors, and a numerical correction applied for X-ray absorption. ${ }^{24}$ The corresponding data from the very small crystal of (5) [3147, having 2168 with $I \geqslant 5 \sigma(I)$] were extremely limited and of low resolution, reflected in the higher cut off $[I \geqslant 5 \sigma(I)]$. This coupled with the reduction in diffracting power on exposure to X-rays ($>10 \%$ in 72 h) led to an overall low precision in the molecular parameters.

Crystal data for (1). $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{AuO} \mathrm{O}_{2} \mathrm{PW} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=953.4$, triclinic, $a=9.219(5), b=9.845(6), c=18.393(14) \AA, \alpha=$ $90.35(6), \quad \beta=104.77(5), \quad \gamma=87.27(4)^{\circ}, \quad U=1612(2) \quad \AA^{3}$, $Z=2, D_{\mathrm{c}}=1.98 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=904$, space group $P \mathrm{I}$, Mo- $K_{x} \quad X$-radiation (graphite monochromator), $\quad \lambda=$ $0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=83.4 \mathrm{~cm}^{-1}$.

Crystal data for (5). $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{AuF}_{6} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{PtW}, M=1173.3$, triclinic, $a=10.920(8), b=11.237(7), \quad c=15.002(17) \AA$, $\alpha=90.18(7), \beta=113.63(9), \gamma=91.79(6)^{\circ}, U=1685(3) \AA^{3}$, $Z=2, D_{\mathrm{c}}=2.32 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1088$, space group $P \mathrm{I}$, Mo- $K_{\alpha}(X$-radiation $), \lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=122.4$ cm^{-1}.

Structure solution and refinement. The structures were solved and all non-hydrogen atoms were located by conventional heavy-atom and difference-Fourier methods, with refinements by blocked-cascade least squares. In (1) the cyclopentadienyl carbon atoms showed a positional disorder with the two possible orientations of the ring in a ratio of $3: 2$. All other atoms of (1) were refined with anisotropic thermal parameters, and hydrogen atoms of the C_{6} and C_{5} rings were incorporated at calculated 'riding' positions ($\mathrm{C}-\mathrm{H}=0.96 \AA$), with common group isotropic thermal parameters. The hydrogen atoms of the Me-4 group were constrained to tetrahedral geometry. However, the hydrogen atom $[\mathrm{H}(1 \mathrm{~A})]$ bound to the alkylidenebridged carbon atom was located from the difference-density maps, and was satisfactorily refined. One molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ co-crystallises in the lattice and was refined satisfactorily with anisotropic thermal parameters for Cl and isotropic parameters for the CH_{2} group. For (5), only the metal triangle and the attached phosphorus atoms were refined with anisotropic thermal parameters. All other atoms were refined isotropically, and no hydrogens were included in the structure factor calculation. The $\left[\mathrm{PF}_{6}\right]^{-}$anion exhibited considerable thermal activity, but no positional disorder was detectable. The closest contacts occur between the Me carbon atoms of the PMe_{3} groups and the F atoms of the anion ($>3.3 \AA$), otherwise there are no particularly short inter- or intra-molecular contacts.
Weighting schemes were applied of the form $w=\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.g\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$, where $g=0.0063$ for (1) and 0.0025 for (5). The analyses of these were reasonable. The final electron-density difference synthesis for (1) showed no peaks $>c a .2 \mathrm{e}^{-3} \AA^{-3}$; the largest peaks were close to the W atoms. For (5) there was considerable ripple and residual peaks ca. $3.5 \mathrm{e} \AA^{-3}$ close to the heavy-metal atom triangle. Scattering factors and corrections for anomalous dispersions were from ref. 25. Refinements converged for (1) at $R 0.044$ ($R^{\prime} 0.045$) and for (5) at $R 0.088$ ($R^{\prime} 0.094$). All calculations were performed on an 'Eclipse' Data General computer with the SHELXTL system of programs. ${ }^{24}$ Atom coordinates for compounds (1) and (5) are listed in Tables 4 and 5, respectively.

Acknowledgements

We thank the S.E.R.C. for support, and for a research studentship (to M. J. W.).

References

1 Part 30, U. Behrens and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1605.
2 J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2075 and refs. therein.
3 F. G. A. Stone, in 'Inorganic Chemistry Toward the 21st Century, ed. M. H. Chisholm, A.C.S. Symp. Ser., 1983, 211, pp. 383-397.
4 G. A. Carriedo, J. A. K. Howard, and F. G. A. Stone, J. Organomet. Chem., 1983, 250, C28; J. Chem. Soc., Dalton Trans., 1984, 1555.

5 M. R. Awang, G. A. Carriedo, J. A. K. Howard, K. A. Mead, I. Moore, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1983, 964.
6 G. A. Carriedo, J. A. K. Howard, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1589.

7 G. A. Carriedo, D. Hodgson, J. A. K. Howard, K. Marsden, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Chem. Commun., 1982, 1006.
8 E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrick, F. R. Kreissl, and J. O. Besenhard, Chem. Ber., 1977, 110, 3397.
9 M. Y. Darensbourg and S. Slater, J. Am. Chem. Soc., 1981, 103, 5914.

10 W. A. Herrmann, Adv. Organomet. Chem., 1982, 20, 159; J. Organomet. Chem., 1983, 250, 319.
11 J. B. Wilford and H. M. Powell, J. Chem. Soc. A, 1969, 8.
12 C. P. Casey, T. J. Burkhardt, C. A. Bunnell, and J. C. Calabrese, J. Am. Chem. Soc., 1977, 99, 2127.

13 T. V. Ashworth, J. A. K. Howard, M. Laguna, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1593 ; J. A. K. Howard, K. A. Mead, J. R. Moss, R. Navarro, F. G. A. Stone, and P. Woodward, ibid., 1981, 743.
14 P. D. Gavens, J. J. Guy, M. J. Mays, and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1977, 33, 137.
15 Z. Dawoodi, M. L. H. Green, V. S. B. Mtetwa, and K. Prout, J. Chem. Soc., Chem. Commun., 1982, 1410; M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.

16 A. J. Schultz, R. K. Brown, J. M. Williams, and R. R. Schrock, J. Am. Chem. Soc., 1981, 103, 169.

17 M. J. Chetcuti, J. A. K. Howard, R. M. Mills, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1757.
18 M. J. Chetcuti, K. Marsden, I. Moore, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1749.
19 M. R. Awang, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 2091.
20 L. W. Bateman, M. Green, K. A. Mead, R. M. Mills, I. D. Salter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2599.
21 T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1609.
22 J. C. Jeffery, J. C. V. Laurie, I. Moore, H. Razay, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1563.
23 J. L. Spencer, Inorg. Synth., 1979, 19, 213.
24 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X-ray system, Cambridge, 1976: updated Göttingen, 1981.
25 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.

[^0]: * 2,2-Dicarbonyl-2- η^{5}-cyclopentadienyl- μ - p-tolylmethylidene-1-(triphenylphosphine)goldtungsten-dichloromethane (1/1) and 3,3-dicarbonyl-3- η^{5}-cyclopentadienyl- $\mu_{3}-p$-tolylmethylidyne-1,2,2-tris(trimethylphosphine)goldplatinumtungsten $(W-A u)(W-P t)$ hexafluorophosphate respectively.
 Supplementary data available (No. SUP 56032, 10 pp .): H-atom coordinates, complete listings of bond distances and angles, thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix. Structure factors are available from the editorial office.

